Phone-trade.ru

Умный дом
206 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Индуктивные датчики

Индуктивные датчики. Виды. Устройство. Параметры и применение

Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.

Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.

Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.

Виды и устройство

Индуктивные датчики разделяются по схеме построения на 2 вида:

  1. Одинарные датчики.
  2. Дифференциальные датчики.

Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.

В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.

Индуктивность катушки вычисляется по формуле: L = WΦ/I

Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением: I = Hl/W

Из этой формулы получаем: L = W²/Rm
Где R m = H*L/Ф – магнитное сопротивление.

Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.

Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:

L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.

Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмж в сравнении с магнитным сопротивлением зазора воздуха Rмв.

Окончательно получается выражение:

На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:

Из недостатков одинарных можно отметить:
  • При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
  • Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
  • Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.

Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).

Дифференциальные датчики классифицируются по форме сердечника:
  • Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
  • Цилиндрические индуктивные датчики с круглым магнитопроводом.

Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.

Для функционирования дифференциального датчика применяют питание от трансформатора (5), который имеет вывод от средней точки. Между этим выводом и общим проводом катушек подключают прибор (4). При этом воздушный промежуток находится в пределах от 0,2 до 0,5 мм.

При расположении якоря в средней позиции при равных промежутках индуктивные сопротивления обмоток (3 и 3′) равны. Значит, значения токов катушек также одинаковы, и общий полученный ток в устройстве равен нулю.

При малом отклонении якоря в любую сторону изменяется значение воздушных промежутков и индуктивностей. Поэтому прибор определяет ток разности I1-I2, который определен функцией перемещения якоря от средней позиции. Разность токов чаще всего определяется магнитоэлектрическим устройством (4), выполненным по типу микроамперметра со схемой выпрямления (В) на входе.

Полярность тока не зависит от изменения общего сопротивления катушек. При применении фазочувствительных схем выпрямления можно определить направление перемещения якоря от средней позиции.

Параметры
  • Одним из параметров индуктивных датчиков является диапазон срабатывания . По этому параметру выбирают датчики, однако он не настолько важен. В инструкции по датчику даны номинальные параметры питания при эксплуатации устройства при температуре +20 градусов. Постоянное напряжение для датчика – 24 В, а переменное 230 В. Обычно датчик работает в совершенно других условиях.
На практике при подборе датчика важны два показателя интервала срабатывания:

Показания первого вычисляются как +10% от 2-го при температуре 25-70 градусов. Показания 2-го отличаются от номинала на 10%. Интервал температуры при этом увеличивается с 18 до 28 градусов. Если при втором параметре применяется номинальное напряжение, то при первом есть разброс 85-110%.

  • Другим параметром является гарантированный предел срабатывания . Он колеблется от нуля до 81% от номинала.
  • Также следует учитывать параметры: повторяемость и гистерезис , который равен расстоянию между конечными позициями работы датчика. Его оптимальная величина равна 20% от эффективного интервала срабатывания.
  • Нагрузочный ток . Изготовители иногда производят датчики специального исполнения на 500 миллиампер.
  • Частота отклика . Этот параметр определяет наибольшую величину возможности переключения в герцах. Основные промышленные датчики имеют частоту отклика 1000 герц.
Методы подключения на схемах

Имеется несколько видов индуктивных датчиков с различным числом проводов для подключения. Рассмотрим основные виды подключений разных индуктивных датчиков.

  • Двухпроводные индуктивные датчики подключаются непосредственно в нагрузочную цепь. Это наиболее простой способ, однако в нем есть особенности. Для такого способа для нагрузки требуется номинальное сопротивление. Если это сопротивление будет больше или меньше, то устройство функционирует некорректно. При включении датчика на постоянный ток нельзя забывать о полярности выводов.
  • Трехпроводные индуктивные датчики наиболее популярны. В них имеется два проводника для подключения питания, а один для нагрузки.
  • Четырехпроводные и пятипроводные индуктивные датчики. У них два провода на питание, другие два на нагрузку, пятый проводник для выбора режима эксплуатации.
Цветовая маркировка

Маркировка проводников цветом является очень удобной для осуществления обслуживания и монтажа датчиков. Их выходные проводники промаркированы определенным цветом:

  • Минус – синий.
  • Плюс – красный.
  • Выход – черный цвет.
  • Второй проводник выхода – белый цвет.
Погрешности

Погрешность преобразования диагностируемого параметра влияет на способность выдачи информации индуктивным датчиком. Суммарная погрешность состоит из множества различных погрешностей.

  • Электромагнитная погрешность является случайной величиной. Она появляется вследствие индуцирования ЭДС в катушке датчика наружными магнитными полями. На производстве возле силовых электрических устройств существуют магнитные поля чаще всего частотой 50 герц.
  • Погрешность от температуры также является случайным значением, так как работа большого количества элементов датчика зависит от температуры и является значительной величиной, учитываемой при проектировании датчиков.
  • Погрешность магнитной упругости. Она появляется от нестабильности деформаций сердечника при сборке прибора, а также из-за изменения деформаций при работе. Влияние нестабильности напряжений в магнитопроводе образует нестабильность сигнала на выходе.
  • Погрешности устройства появляются по причине влияния измеряющей силы на деформации элементов датчика, а также влияния скачка усилия измерения на нестабильность деформации. Также на погрешность влияют люфты и зазоры в подвижных частях конструкции датчика.

Погрешность кабеля образуется от непостоянной величины сопротивления, деформации кабеля и его температуры, наводок электродвижущей силы в кабеле от внешних полей.

Электромагнитные параметры материалов и их свойства со временем меняются. Чаще всего процессы изменения свойств материалов происходят в первые 200 часов после термообработки сердечника магнитопровода. Далее эти свойства остаются теми же, и не влияют на полную погрешность датчика.

Различные типы индуктивных датчиков

В простом бесконтактном датчике (иногда называемом бесконтактным реле) при подключении устройства к источнику электропитания в его катушке (цепи, контуре или обмотке) протекает переменный ток. При приближении к катушке проводящего или магнитопроницаемого материала, например стального диска, импеданс катушки изменяется. Превышение порогового значения служит сигналом о наличии объекта. Бесконтактные датчики обычно используются для определения наличия металла, а их выходной сигнал часто используется для управления переключателем. Эти датчики широко используются во многих областях промышленности, где проблематично использовать электрические контакты обычных переключателей, например там, где много грязи или воды. Даже в обычной автомойке используется множество индуктивных бесконтактных датчиков.

Индуктивные датчики переменной индуктивности и сопротивления обычно генерируют электрический сигнал, пропорциональный смещению проводящего или магнитопроницаемого объекта (обычно стального стержня) относительно катушки. Как и в случае с бесконтактными датчиками, импеданс катушки изменяется пропорционально смещению объекта относительно катушки, в которой протекает переменный ток. Такие устройства обычно используются для измерения смещения поршней в цилиндрах, например в пневматических или гидравлических системах. Можно сделать так, чтобы поршень проходил по внешнему диаметру катушки.

Сельсины измеряют индуктивную связь между катушками, когда те движутся относительно друг друга. Сельсины, которые обычно вращаются, необходимо напрямую подключать как к движущейся, так и к неподвижной деталям (обычно называемым ротором и статором). Они обеспечивают чрезвычайно высокую точность измерений и используются в промышленной метрологии, радиолокационных антеннах и телескопах. Сельсины, как известно, сегодня дорогие и используются все реже, так как на смену им приходят (бесщеточные) резольверы. Последние представляют собой еще один вид индуктивных датчиков, но подключаются только к обмоткам статора.

LVDT, RVDT и резольверы измеряют изменение индуктивной связи между катушками, которые обычно называют первичной и вторичной обмотками. Первичная обмотка передает энергию во вторичные, но количество энергии в каждой из вторичных обмоток изменяется пропорционально относительному смещению магнитопроницаемого материала. В LVDT через отверстие обмоток обычно проходит металлический стержень. Как правило, ротор или полюсная деталь вращаются в RVDT или резольвере относительно обмоток, расположенных вокруг ротора. Обычно LVDT и RVDT используются в гидравлических сервоприводах элеронов аэрокосмических аппаратов, а также элементах управления двигателем и топливной системой. Резольверы, в свою очередь, применяются для коммутации бесщеточных электродвигателей.

Существенным преимуществом индуктивных датчиков является то, что связанные схемы обработки сигналов не нужно располагать в непосредственной близости от чувствительных катушек. Это позволяет размещать чувствительные катушки в неблагоприятных условиях эксплуатации, где другие методы измерения (например, магнитные или оптические) невозможны, поскольку для них относительно чувствительная кремниевая электроника должна находиться в точке измерения.

Как действует датчик?

Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.

  1. При начале работы на конечный выключатель подается питание, что способствует образованию магнитного поля. Именно оно влияет на вихревые токи, которые, в свою очередь, меняют амплитуду колебаний у работающего генератора.
  2. Результат всех этих преобразований — получение выходного сигнала, который может варьироваться, в зависимости от расстояния между работающим датчиком и исследуемым предметом. Затем при помощи специального устройства аналоговый сигнал преображается в логический.
  3. Индуктивный датчик также нужен, чтобы распознавать положение металлических предметов. Это может играть важную роль на производстве. Если по линии следуют изделия, на которых металлические детали должны быть расположены в определенном порядке, то датчики проконтролируют правильность этого расположения. В случае обнаружения ошибки устройство подаст сигнал на конвейер, и программа предпримет дальнейшие действия для устранения проблемы.

Бесконтактные датчики C-Lin — качество и надежность по приемлемой цене

Купить датчик индукционный бесконтактный хорошего качества и по доступной цене можно в нашем интернет-магазине. Мы предлагаем надежные решения торговой марки C-Lin.

Ассортимент продукции этого бренда очень широк. Это позволяет выбрать наиболее подходящие модели для различных целей. В нашем магазине представлены бесконтактные индуктивные датчики положения следующих линеек:

Устройства данного производителя характеризуются возможностью разного подключения. Так, можно отыскать модели четырех-, трех- или же двухпроводного подключения через разъем, кабель либо же клеммы.

Современные электротехнические устройства снабжены системой защиты от короткого замыкания и перегрузок, а также световыми индикаторами, что упрощает работу с ними. Надежные и долговечные они станут отличным выбором для самых разных задач в различных областях промышленности.

Принцип действия индуктивного датчика

Индуктивный датчик включает в себя катушку индуктивности, так называемый чувствительный элемент, с открытым магнитопроводом в сторону активной поверхности.

Перед активной поверхностью датчика возникает электромагнитное поле. При попадании металлического предмета в электромагнитное поле происходит следующее: колебания генератора слабеют, демодулированное напряжение падает, срабатывает триггер, коммутационный элемент переключается.

Установка индуктивного датчика

Зачастую, объект воздействия для индуктивного датчика делается в виде стальной пластины достаточных размеров, скрепленной с находящейся в движении деталью механизма, местонахождение которой требуется контролировать.

Расстояние срабатывания может измениться в том случае, если габариты объекта воздействия меньше стандартных.

При распределении индуктивных датчиков следует учесть минимально допустимое расстояние до близлежащих сооружений из метала.

Индуктивные бесконтактные выключатели неутапливаемой конструкции обладают большим диапазоном срабатывания, но в тоже время имеют более строгие ограничения к требованиям их установки.

Из-за установки индуктивного датчика несколько ближе чем это предусматривает ГОСТ расстояние срабатывания может увеличится

Характеристика индуктивных преобразователей

Индуктивный датчик или бесконтактной системы зажигания представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Отладочные наборы

Рис. 8. Отладочный набор для тестирования схем сбора данных с датчиков линейного перемещения

Для тестирования характеристик и параметров работы датчиков семейства LX33xx производитель предлагает специальные отладочные наборы, которые позволяют в максимально короткие сроки протестировать и реализовать недорогие компактные схемы сбора данных с датчиков линейного (LX3301AEVB14LK, LX3302EVB14LK, рис. 8) и углового (LX3301AEVB14RK, LX3302EVB14RK, рис. 9) перемещения [5, 6].

В стандартный комплект поставки входит объединенная конструкция из тестовых датчиков (двух катушек индуктивности, выполненных на печатной плате) и схемы сбора данных (LX33xx). Также в наборе присутствует CD-ROM с технической документацией и ПО, которое реализует графический интерфейс пользователя.

Питание осуществляется от обычного USB-порта персонального компьютера. Для конфигурирования встроенной EEPROM предусмотрен модуль USB-преобразователя LXM9516.

Следует отметить, что возможность конфигурирования повышает гибкость использования тестовой системы и позволяет увеличить число возможных применений.

Емкостной датчик приближения содержит чувствительный элемент в виде «развернутого» конденсатора (см. рис.2.3 а). Данный конденсатор является часто-тозадающим элементом релаксационного генератора на основе узкополосного операционного усилителя. Частота колебаний такого генератора обратно пропор­циональна емкости конденсатора (чувствительного элемента датчика), а их ампли­туда неизменна. В действительности, с уменьшением емкости и ростом частоты наступает момент, когда из-за свойственной реальному операционному усилителю инерционности условия самовозбуждения генератора перестают выполняться и колебания срываются.

Приближение постороннего объекта вызывает удлинение электрического поля перед поверхностями электродов конденсатора. Благодаря этому повышает­ся емкость конденсатора и запускается автогенератор. В дальнейшем высокочас­тотные колебания детектируются, что вызывает срабатывание триггера и измене-

ние состояния выхода выключателя.

Основным элементом емкостного датчика приближения является релакса­ционный генератор на основе узкополосного операционного усилителя (рис.2.1). Такой генератор построен на основе ОУ, входящего в состав ИМС типа 155ДА1. Так как микросхема питается от одного источника, с помощью резистивного дели­теля R1R3 на неинвертирующий вход ОУ подано смещение, равное половине на­пряжения питания. Частотозадающая цепь образована резистором R5 и емкостью чувствительного элемента Сх. Резистор R2 служит для защиты входа ОУ от помех и наводок, способных вывести ОУ из строя. Глубина обратной положительной связи образована резистором R4. Цепь R6C1 служит для коррекции собственной полосы пропускания ОУ и обеспечивает надежный запуск генератора при внесе­нии в электрическое поле конденсатора Сх постороннего предмета. Возникшие колебания детектируются пиковым детектором, на выход которого подключен светодиод HL1. В отсутствие объекта в чувствительной зоне генератор не работа­ет, светодиод HL1 не светится, при внесении в чувствительную зону металличе­ского или диэлектрического предмета светодиод HL1 светится.

Частота колебаний генератора определяется элементами Сх, R5, R4 и при указанных на схеме номиналах составляет около 100 кГц. При приближении к чув­ствительному элементу металлической пластины, частота колебаний будет боль­ше, чем в случае диэлектрической пластины, поскольку в первом случае чувстви­тельный элемент образуется двумя последовательно соединенными конденсато­рами (рис.2.4 а).

Задание на самоподготовку

Изучить работу релаксационного генератора и основных узлов емкостного датчика приближения согласно рис.2.1 и 2.3.

Подготовить протокол к лабораторной работе. В нем начертить структур­ную схему емкостного датчика приближения и принципиальную схему ре­лаксационного генератора, подготовить табл.2.1.

Читать еще:  Принцип работы противопожарного датчика
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector